vineri, 26 februarie 2016

в каких формах выражаются законы квантовой физики

4.4. Филосовские выводы

из квантовой механики

Принцип неопределенности, как нетрудно заметить, тесно связан с такой фундаментальной проблемой научного познания, как взаимодействие объекта и субъекта, которая имеет философский характер.

Что нового дает квантовая механика для ее понимания?

Прежде всего, она ясно показывает, что субъект, т.е. физик, исследующий мир мельчайших частиц материи,

не может не воздействовать своими приборами и измерительными устройствами на эти частицы. Классическая физика тоже признавала, что приборы наблюдения и измерения оказывают свое возмущающее влияние на изучаемые процессы, но оно было там настолько незначительно, что им можно было пренебречь. Совсем иное положение мы имеем в квантовой механике, ибо приборы и измерительные устройства, используемые для изучения микрообъектов, являются макрообъектами. Поэтому они вносят такие возмущения в движения микрочастиц, что в результате их будущие состояния нельзя определить вполне точно и достоверно. Стремясь точно определить один параметр, получают неточность в измерении другого параметра.

Важнейший философский вывод из квантовой механики заключается в принципиальной неопределенности результатов измерения и, следовательно, невозможности точного предвидения будущего.

Однако отсюда вовсе не следует, что предсказания в области микромира совершенно невозможны. Речь идет только о том, что воздействия приборов наблюдения и измерения на мельчайшие частицы материи сказываются на их поведении значительно сильнее, чем на поведении макротел. Однако даже в области макромира абсолютно точное предсказание осуществить невозможно. Тем более это касается недоступного нашим чувствам микромира. Неудивительно поэтому, что после возникновения квантовой механики многие заговорили о полной непредсказуемости будущего, о "свободе воли" электрона и подобных ему частиц, о господстве случайности в мире и отсутствии в нем детерминизма. Подробнее об этом мы расскажем в следующей главе.

Основные понятия термины

  • Вероятность
  • Дуализм
  • Микромир
  • Принцип дополнительности
  • Элементарные частицы
  • Волна
  • Корпускула
  • Макромир
  • Мегамир
  • Принцип неопределенности
  • Фотоэффект
  • Дуализм волны и частицы

Литература

Карнап Р. Философские основания физики. - М. Прогресс, 1971. - С. 370-380.

Философские проблемы естествознания. - М. Высшая школа, 1985. - С. 262-264.

Большая Энциклопедия Нефти Газа

Законы - квантовая механика

Страница 1

Законы квантовой механики меняются для частиц, движущихся со скоростями, сравнимыми со скоростью света. Это составляет предмет релятивистской квантовой механики.

Законы квантовой механики выражаются в сложной математической форме, и мы не можем на них останавливаться. Отметим еще раз, что квантовая механика не находится в противоречии с классической механикой Ньютона.

Законы квантовой механики выражаются в довольно сложной математической форме, и мы не можем на них останавливаться.

Поскольку некоторые законы квантовой механики выражаются в виде дифференциальных уравнений, нужно иметь ясное представление о том, что такое дифференциальное уравнение. Дифференциальное уравнение это просто уравнение, в которое входят производные от функции. Если функция зависит только от одной независимой переменной, дифференциальное уравнение называется обыкновенным дифференциальным уравнением.

В основе К.э. лежат законы квантовой механики и относительности теории. Аналогично фотонам, электроны и позитроны рассматриваются в К.э. как частицы т.н. электронно-позит-ронного поля.

Данный принцип предполагает, что законы квантовой механики сводятся к законам классической механики в том случае, когда можно пренебречь тонкими деталями явления. В качестве примера рассмотрим волновой пакет, описывающий движение свободной частицы, когда ее энергия или импульс не являются строго определенными: траектория движения пакета совпадает с траекторией движения частицы той же массы, описываемой законами классической механики. Но если энергия становится более точно определенной, так что вклад в нее дает меньшее число квантовых состояний, характер распределения становится менее классическим и более квантовым. Другим примером является распределение Планка для энергии излучения абсолютно черного тела: когда постоянная Планка стремится к нулю ( в гипотетическом классическом мире), энергетическое распределение становится распределением классической системы и согласуется с законом Релея - Джинса. Еще один пример: импульс фотона ( кванта света) передается предмету, который его поглощает или отражает, и, если в процессе участвует достаточно большое число фотонов, этот импульс интерпретируется как постоянное давление излучения в классической электромагнитной теории.

Как будет показано во второй главе, законы квантовой механики действительно позволяют рассматривать электроны как невзаимодействующие частицы.

Причина этого заключается просто в том, что законы квантовой механики легче выражаются при использовании функции состояния, чем функции распределения вероятности.

При образовании зародышевых пор или субмикротрещин могут проявляться и законы квантовой механики .

Уборка мусора.

Рассмотрим теперь, как такой компьютер можно построить, используя законы квантовой механики. Мы собираемся записать гамильтониан для системы, состоящей из взаимодействующих частей, которая будет вести себя в некотором смысле как большая система, служащая универсальным компьютером. Конечно, большая система также подчиняется квантовой механике, но она взаимодействует с термостатом и другими вещами, что могло бы сделать ее существенно необратимой. Что бы мы хотели, так это сделать компьютер настолько малым и настолько простым, насколько это возможно.

Заметим, в частности, что статистическую природу имеют все законы квантовой механики и все следствия из этих законов.

Надо отметить, что многие физические законы ( например, законы квантовой механики ) очень сложны, необычны и поэтому не поддаются наглядному описанию с помощью моделей или классических аналогий. В этих случаях их описание на основе уравнений является единственно возможным и строгим. Только такой способ описания позволяет нам, как говорил Л. Д. Ландау, понять вещи, которые мы уже не в силах вообразить.

Для л З формула (2.28) не годится; для таких систем используются законы квантовой механики .

Требование калибровочной симметрии было определяющим при создании квантовой электродинамики, в которой законы квантовой механики применяются не только к частицам, но и к самому электромагнитному полю.

. © Copyright 2008 - 2014 by Знание

Г. И. Рузавин Концепции современного естествознания Рекомендовано Министерством общего и профессионального образования Российской Федерации в качестве учебник

4.4. Философские выводы из квантовой механики

Принцип неопределенности, как нетрудно заметить, тесно связан с такой фундаментальной проблемой научного познания, как взаимодействие объекта и субъекта, которая имеет философский характер.

Что нового дает квантовая механика для ее понимания? Прежде всего, она ясно показывает, что субъект, т. е. физик, исследующий мир мельчайших частиц материи, не может не воздействовать своими приборами и измерительными устройствами на эти частицы. Классическая физика тоже признавала, что приборы наблюдения и измерения оказывают свое возмущающее влияние на изучаемые процессы, но оно было там настолько незначительно, что им можно было пренебречь. Совсем иное положение мы имеем в квантовой механике, ибо приборы и измерительные устройства, используемые для изучения микрообъектов, являются макрообъектами. Поэтому они вносят такие возмущения в движения микрочастиц, что в результате их будущие состояния нельзя определить вполне точно и достоверно. Стремясь точно определить один параметр, получают неточность в измерении другого параметра.

Важнейший философский вывод из квантовой механики заключается в принципиальной неопределенности результатов измерения и, следовательно, невозможности точного предвидения будущего.

Невозможно с одинаковой точностью определитьи положение,и импульс микрочастицы. Произведение их неточностей не должно превышать постоянную Планка.

Невозможно с одинаковой точностью определитьи положение,и импульс микрочастицы. Произведение их неточностей не должно превышать постоянную Планка. - раздел Образование, Концепции современного естествознания На Практике, Конечно, Неточности Измерения Бывают Значительно Больше, Чем Тот.

На практике, конечно, неточности измерения бывают значительно больше, чем тот минимум, который предписывает принцип неопределенности, но речь идет опринципиальной стороне дела. Границы, которые устанавливаются принципом неопределенности, не могут быть преодолены путем совершенствования средств измерения. Поэтому принцип неопределенности, по крайней мере, в настоящее время считается фундаментальным положением квантовой механики и неявно фигурирует в ней во всех рассуждениях. Теоретически не исключается возможность отклонения этого принципа и соответственно изменения связанных с ним законов квантовой механики, но пока он считается общепризнанным.

Из принципа неопределенности непосредственно следует, что вполне возможно осуществить эксперимент, с помощью которого

можно с большой точностью определить положение микрочастицы, но в таком случае импульс ее будет определен менее точно. Наоборот, если импульс микрочастицы будет определен с возможной степенью точности, тогда ее положение будет определено недостаточно точно.

В квантовой механике любое состояние системы описывается посредством так называемой волновой функции, но в отличие от классической механики эта функция определяет параметры ее будущего состояния не достоверно, а лишь с той или иной степенью вероятности. Это означает, что для того или иного параметра системы волновая функция может давать лишь вероятностные предсказания. Например, будущее положение какой-либо частицы системы будет определено лишь в некотором интервале значений, точнее говоря, для нее будет известно лишь вероятностное распределение значений.

Таким образом, квантовая физика фундаментально отличается от классической физики тем, что ее предсказания имеют лишь вероятностный характер и потому она не обеспечивает точных предсказаний, к каким мы привыкли в классической механике. Именно эта неопределенность предсказаний больше всего вызывает споры среди ученых, некоторые из которых стали в связи с этим говорить об индетерминизме квантовой механики. Отметим, что представители прежней, классической физики были убеждены, что по мере развития науки и совершенствования измерительной техники законы науки станут все более точными и достоверными. Поэтому они верили, что никакого предела для точности предсказаний не существует. Принцип неопределенности, лежащий в основе квантовой механики, в корне подорвал эту веру.

Если поведение микрообъектов можно рассматривать как с корпускулярной, так и волновой точки зрения, то каким образом можно описывать их поведение в целом? Очевидно, что ни корпускулярная, ни волновая картина в отдельности не дают адекватного их описания.

В силу кажущейся противоречивости корпускулярных и волновых свойств Н. Бор в 1927 г. выдвинул принцип дополнительности для квантово-механического описания микрообъектов, согласно которому корпускулярная картина такого описания должна быть дополнена альтернативным волновым описанием. Действительно, в одних экспериментах микрообъекты, например электроны, ведут себя как типичные корпускулы, в других — как волновые структуры. Нельзя, конечно, думать, что волновые и корпускулярные свойства у них возникают вследствие определенных экспериментальных условий. На самом деле такие свойства при этих экспериментах только проявляются и обнаруживаются. Мы приходим, таким образом, к выводу, что дуализм микрообъектов, заключающийся в объединении в этом объекте одно-

временно волновых и корпускулярных свойств, представляет собой фундаментальную характеристику объектов микромира. Опираясь именно на эту характеристику, мы только и можем адекватно описать, понять и объяснить другие их особенности и микромира в целом.

В настоящее время принцип дополнительности пытаются использовать не только в квантовой физике, но и во всех тех случаях, когда приходится описывать явления или процессы с противоречащими свойствами. Следует, однако, иметь в виду, что в квантовой физике необходимость использования этого принципа обусловлена дискретной природой ее объектов и квантовым характером величин, которые применяются при их описании.

6.6. Философские выводы из квантовой физики

Новые открытия и теоретические результаты, полученные при исследовании мира мельчайших частиц материи, коренным образом отличаются от всего того, что считалось общепризнанным в классической физике и естествознании в целом. Поэтому в первое время немало ученых считали, что они не только подрывают материалистический взгляд на природу, но и отрицают объективное содержание физической науки.

Основная философская проблема квантовой механики заключается в интерпретации принципа неопределенности Гейзенберга и тесно связанного с ним статистического характера ее законов.

Если классическая физика исходила из предположения, что точность измерений может быть неограниченно увеличена, а физические законы будут формулироваться все точнее и точнее, то принцип неопределенности указывает теоретический предел этой точности. Хотя значения таких сопряженных квантово-механических величин, как координата и импульс частицы, при практических измерениях оказываются значительно больше теоретического предела, тем не менее этот предел нельзя не учитывать в принципе. Именно поэтому предсказания в квантовой механике всегда будут иметь вероятностный характер.

Чтобы яснее представить различие между классической и квантовой механикой, сравним, как используется в них статистический метод. Если в классической механике систему, состоящую из большого числа независимых частиц, изучают статистически по соображениям практического удобства, то квантовые системы в принципе нельзя изучать иначе.

Проблема неопределенности в квантовой механике теснейшим образом связана со специфическим характером объектов, которые

она изучает, и методами их исследования. Поэтому для их изучения пришлось обратиться, с одной стороны, к экспериментам, выявляющим их корпускулярный, а с другой — волновой характер. В этом, как известно, и состоит идея принципа дополнительности Н. Бора.

Другой специфической особенностью квантовых систем является та первостепенная роль, которую играет в них квант действия. Если в классической физике его воздействие настолько мало, что его можно не учитывать, то в квантовой механике он может изменить состояние системы. Это обстоятельство имеет важное значения для теоретического анализа воздействия прибора на изучаемый объект.

Что нового дает квантовая механика для решения этой проблемы?

Прежде всего, она ясно показывает, что физик, исследующий микромир своими макроприборами и измерительными устройствами, не может не воздействовать на мир мельчайших частиц материи, поскольку даже квант действия может изменить его состояние. Поэтому, стремясь точнее измерить один параметр состояния частицы, например координату, неизбежно вносят неточность в измерение другого параметра.

Из вышеизложенного вовсе не следует, что предсказания в области микромира совершенно невозможны. Речь идет только о том, что совершенно иная природа квантовых объектов, их дуалистический корпускулярно-волновой характер делают точные предсказания невозможными. Но даже в классической физике абсолютно достоверные предсказания осуществить нельзя. Тем более это относится к недоступному нашим чувствам сложнейшему миру мельчайших частиц материи. Поэтому не приходится удивляться тому, что после возникновения квантовой механики некоторые ученые заговорили о полной непредсказуемости будущего, господстве в мире неопределенности и случайности и даже о «свободе воли» электрона.

С философской точки зрения подобные ошибочные заявления объясняются неспособностью их авторов отказаться от прежних, утвердившихся представлений классической физики, относящихся к привычному миру нашего опыта, которые оказываются неприменимыми к совершенно новому миру микрочастиц материи.

Основные понятия и вопросы

Niciun comentariu:

Trimiteți un comentariu