marți, 16 februarie 2016

в каких единицах измеряется модуль ускорения

§ 9. Ускорение

Подбросьте вверх мяч и сделайте вывод об изменении его скорости.

При движении тел их скорости обычно меняются либо по модулю, либо по направлению, либо жеодновременно как по модулю, так и по направлению.

Изменение скорости тела может происходить как очень быстро (движение пули в канале ствола при выстреле из винтовки), так и сравнительно медленно (движение поезда при его отправлении).

Физическая величина, характеризующая быстроту изменения скорости, называется ускорением.

Рассмотрим случай криволинейного и неравномерного движения точки. В этом случае её скорость с течением времени изменяется как по модулю, так и по направлению. Пусть в некоторый момент времени t точка занимает положение М и имеет скорость (рис. 1.27). Спустя промежуток времени Δt точка займёт положение М1 и будет иметь скорость 1. Изменение скорости за время Δt1 равно Δ1 = 1 - . Вычитание вектора можно произвести путём прибавления к вектору 1 вектора (-):

Δ1 = 1 - = 1 + (-).

Согласно правилу сложения векторов вектор изменения скорости Δ1 направлен из начала вектора 1 в конец вектора (-), как это показано на рисунке 1.28.

Понаблюдайте за началом движения какого-либо тела. Что вы можете сказать о его скорости?

Приведите друг другу примеры движения тел, при которых изменения скорости происходят только по направлению или только по модулю.

Поделив вектор Δ1 на промежуток времени Δt1 получим вектор, направленный так же, как и вектор изменения скорости Δ1. Этот вектор называют средним ускорением точки за промежуток времени Δt1. Обозначив его через cр1. запишем:

По аналогии с определением мгновенной скорости определим мгновенное ускорение. Для этого найдём теперь средние ускорения точки за всё меньшие и меньшие промежутки времени:

При уменьшении промежутка времени Δt вектор Δ уменьшается по модулю и меняется по направлению (рис. 1.29). Соответственно средние ускорения также меняются по модулю и направлению. Но при стремлении промежутка времени Δt к нулю отношение изменения скорости к изменению времени стремится к определённому вектору как к своему предельному значению. В механике эту величину называют ускорением точки в данный момент времени или просто ускорением и обозначают .

Ускорение точки — это предел отношения изменения скорости Δ к промежутку времени Δt, в течение которого это изменение произошло, при стремлении Δt к нулю.

Ускорение направлено так, как направлен вектор изменения скорости Δ при стремлении промежутка времени Δt к нулю. В отличие от направления скорости, направление вектора ускорения нельзя определить, зная траекторию точки и направление движения точки по траектории. В дальнейшем на простых примерах мы увидим, как можно определить направление ускорения точки при прямолинейном и криволинейном движениях.

В общем случае ускорение направлено под углом к вектору скорости (рис. 1.30). Полное ускорение характеризует изменение скорости и по модулю, и по направлению. Часто полное ускорение считается равным векторной сумме двух ускорений — касательного (к ) и центростремительного (цс ). Касательное ускорение к характеризует изменение скорости по модулю и направлено по касательной к траектории движения. Центростремительное ускорение цс характеризует изменение скорости по направлению и перпендикулярно касательной, т. е. направлено к центру кривизны траектории в данной точке. В дальнейшем мы рассмотрим два частных случая: точка движется по прямой и скорость изменяется только по модулю; точка движется равномерно по окружности и скорость изменяется только по направлению.

Единица ускорения. Движение точки может происходить как с переменным, так и с постоянным ускорением. Если ускорение точки постоянно, то отношение изменения скорости к промежутку времени, за которое это изменение произошло, будет одним и тем же для любого интервала времени. Поэтому, обозначив через Δt некоторый произвольный промежуток времени, а через Δ — изменение скорости за этот промежуток, можно записать:

Так как промежуток времени Δt — величина положительная, то из этой формулы следует, что если ускорение точки с течением времени не изменяется, то оно направлено так же, как и вектор изменения скорости. Таким образом, если ускорение постоянно, то его можно истолковать как изменение скорости в единицу времени. Это позволяет установить единицы модуля ускорения и его проекций.

Запишем выражение для модуля ускорения:

§ 4. Изменение скорости. Ускорение

При неравномерном движении скорость точки изменяется.

Пусть в момент времени t0 скорость точки 0 .

В момент времени t скорость точки .

За интервал времени t = t – t0 скорость изменилась от 0 до .

Изменение скорости

Изменение скорости – это вектор, равный разности двух векторов: конечной скорости и 0 начальной скорости .

= - 0. (5)

Скорость может изменяться быстро и медленно. Физическая величина, которая характеризует быстроту изменения скорости – ускорение .

Среднее ускорение

Среднее ускорение cp – это физическая величина, равная отношению вектора изменения скорости к интервалу времени, за который оно произошло.

Направление вектора среднего ускорения совпадает с направлением вектора изменения скорости:

Мгновенное ускорение

Мгновенное ускорение мгн – это вектор ускорения материальной точки в любой момент времени.

Мгновенное ускорение равно пределу отношения вектора изменения скорости к интервалу времени, за который это изменение произошло, при стремлении интервала времени к нулю.

Математически формула (7) является определением производной от мгновенной скорости по времени:

или мгновенное ускорение есть вторая производная по времени от радиус-вектора:

Если компоненты вектора мгн есть vx. vy и vz. то, рассуждая так же, как и при определении компонент вектора скорости, получим:

Или, используя формулу (4), получим:

т.е. компоненты вектора ускорения выражаются вторыми производными по времени от соответствующих координат точки.

Примечание. Если нам известен вид функций, выражающих зависимость координат от времени, то двукратным дифференцированием их мы найдем компоненты вектора ускорения, а вместе с тем его величину и направление. Наоборот, если известен вид функций, выражающих зависимость компонент ускорения от времени, то обратной операцией – интегрированием – мы найдем функции, выражающие зависимость координат от времени (см. примечание в § 8).

Если модуль скорости изменяется, но в любой момент времени:

cp = мгн = const = || = const = const,

то такое неравномерное (переменное) движение – равнопеременное (равноускоренное, если v > v0. или равнозамедленное, если v

Ускорение – это величина, которая характеризует быстроту изменения скорости.

Например, автомобиль, трогаясь с места, увеличивает скорость движения, то есть движется ускоренно. Вначале его скорость равна нулю. Тронувшись с места, автомобиль постепенно разгоняется до какой-то определённой скорости. Если на его пути загорится красный сигнал светофора, то автомобиль остановится. Но остановится он не сразу, а за какое-то время. То есть скорость его будет уменьшаться вплоть до нуля – автомобиль будет двигаться замедленно, пока совсем не остановится. Однако в физике нет термина «замедление». Если тело движется, замедляя скорость, то это тоже будет ускорение тела, только со знаком минус (как вы помните, скорость – это векторная величина).

Среднее ускорение

Среднее ускорение > – это отношение изменения скорости к промежутку времени, за который это изменении произошло. Определить среднее ускорение можно формулой:

где вектор ускорения.

Направление вектора ускорения совпадает с направлением изменения скорости Δ = - 0 (здесь 0 – это начальная скорость, то есть скорость, с которой тело начало ускоряться).

В момент времени t1 (см. рис 1.8) тело имеет скорость 0. В момент времени t2 тело имеет скорость . Согласно правилу вычитания векторов найдём вектор изменения скорости Δ = - 0. Тогда определить ускорение можно так:

Рис. 1.8. Среднее ускорение.

В СИ единица ускорения – это 1 метр в секунду за секунду (или метр на секунду в квадрате), то есть

Метр на секунду в квадрате равен ускорению прямолинейно движущейся точки, при котором за одну секунду скорость этой точки увеличивается на 1 м/с. Иными словами, ускорение определяет, насколько изменяется скорость тела за одну секунду. Например, если ускорение равно 5 м/с 2. то это означает, что скорость тела каждую секунду увеличивается на 5 м/с.

Мгновенное ускорение

Мгновенное ускорение тела (материальной точки) в данный момент времени – это физическая величина, равная пределу, к которому стремится среднее ускорение при стремлении промежутка времени к нулю. Иными словами – это ускорение, которое развивает тело за очень короткий отрезок времени:

Направление ускорения также совпадает с направлением изменения скорости Δ при очень малых значениях промежутка времени, за который происходит изменение скорости. Вектор ускорения может быть задан проекциями на соответствующие оси координат в данной системе отсчёта (проекциями аХ. aY. aZ ).

При ускоренном прямолинейном движении скорость тела возрастает по модулю, то есть а направление вектора ускорения совпадает с вектором скорости 2.

Если скорость тела по модулю уменьшается, то есть то направление вектора ускорения противоположно направлению вектора скорости 2. Иначе говоря, в данном случае происходит замедление движения. при этом ускорение будет отрицательным (а

Рис. 1.9. Мгновенное ускорение.

При движении по криволинейной траектории изменяется не только модуль скорости, но и её направление. В этом случае вектор ускорение представляют в виде двух составляющих (см. следующий раздел).

Тангенциальное ускорение

Тангенциальное (касательное) ускорение – это составляющая вектора ускорения, направленная вдоль касательной к траектории в данной точке траектории движения. Тангенциальное ускорение характеризует изменение скорости по модулю при криволинейном движении.

Рис. 1.10. Тангенциальное ускорение.

Направление вектора тангенциального ускорения τ (см. рис. 1.10) совпадает с направлением линейной скорости или противоположно ему. То есть вектор тангенциального ускорения лежит на одной оси с касательной окружности, которая является траекторией движения тела.

Нормальное ускорение

Нормальное ускорение – это составляющая вектора ускорения, направленная вдоль нормали к траектории движения в данной точке на траектории движения тела. То есть вектор нормального ускорения перпендикулярен линейной скорости движения (см. рис. 1.10). Нормальное ускорение характеризует изменение скорости по направлению и обозначается буквой n. Вектор нормального ускорения направлен по радиусу кривизны траектории.

В чем измеряется ускорение?

Ускорением принято считать производную от скорости, взятую по времени. Это векторная величина, которая показывает, на какую именно изменяется величина вектора скорости тела или точки при движении за одну единицу времени. Исходя из этого, ускорение не только учитывает изменение скорости, но также и её направление.

К примеру, в случае, когда падающее на Землю тело, пренебрегая сопротивлением от воздуха, способно увеличить собственную скорость за одну секунду почти на 9,8 м/с.

Выясним, в чем измеряется ускорение в данное время. В СИ единицей измерения ускорения служит за секунду метр в секунду, то есть м/с2 (m/s²). Очень часто пользуются внесистемной единицей Галом (Gal), которая преимущественно применяется в гравиметрии, при этом 1 Гал равняется 1 см/с².

Очень часто в измерении ускорения используют акселерометры. Непосредственно они не способны измерить ускорение, поскольку их задачей является измерить силу реакции опоры, возникающей при ускоренном движении.

Niciun comentariu:

Trimiteți un comentariu